p38 MAPK mediates acid-induced transcription of PEPCK in LLC-PK(1)-FBPase(+) cells.
نویسندگان
چکیده
LLC-PK(1)-FBPase(+) cells are a gluconeogenic and pH-responsive renal proximal tubule-like cell line. On incubation with acidic medium (pH 6.9), LLC-PK(1)-FBPase(+) cells exhibit an increased rate of ammonia production as well as increases in glutaminase and phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels and enzyme activities. The increase in PEPCK mRNA is due to an enhanced rate of transcription that is initiated in response to intracellular acidosis. The involvement of known MAPK activities (ERK1/2, SAPK/JNK, p38) in the associated signal transduction pathway was examined by determining the effects of specific MAPK activators and inhibitors on basal and acid-induced PEPCK mRNA levels. Transfer of LLC-PK(1)-FBPase(+) cultures to acidic medium resulted in specific phosphorylation, and thus activation, of p38 and of activating transcription factor-2 (ATF-2), respectively. Anisomycin (AI), a strong p38 activator, increased PEPCK mRNA to levels comparable to those observed with acid stimulation. AI also induced a time-dependent phosphorylation of p38 and ATF-2. SB-203580, a specific p38 inhibitor, blocked both acid- and AI-induced PEPCK mRNA levels. Western blot analyses revealed that the SB-203580-sensitive p38alpha isoform is strongly expressed. The octanucleotide sequence of the cAMP-response element-1 site of the PEPCK promotor is a perfect match to the consensus element for binding ATF-2. The specificity of ATF-2 binding was proven by ELISA. We conclude that the SB-203580-sensitive p38alpha-ATF-2 signaling pathway is a likely mediator of the pH-responsive induction of PEPCK mRNA levels in renal LLC-PK(1)-FBPase(+) cells.
منابع مشابه
Differential expression and acid-base regulation of glutaminase mRNAs in gluconeogenic LLC-PK(1)-FBPase(+) cells.
LLC-PK(1)-FBPase(+) cells, which are a gluconeogenic substrain of porcine renal LLC-PK(1) cells, exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase (PDG) activity. On adaptation to acidic medium (pH 6.9, 9 mM HCO(-)(3)), LLC-PK(1)-FBPase(+) cells also exhibit a greater increase in ammonia production and respond with an increase in assayable PDG activit...
متن کاملMechanism of increased renal gene expression during metabolic acidosis.
Increased renal catabolism of plasma glutamine during metabolic acidosis generates two ammonium ions that are predominantly excreted in the urine. They function as expendable cations that facilitate the excretion of acids. Further catabolism of alpha-ketoglutarate yields two bicarbonate ions that are transported into the venous blood to partially compensate for the acidosis. In rat kidney, this...
متن کاملpH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function.
Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 ce...
متن کاملEGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death.
2,3,5-Tris-(glutathion-S-yl)hydroquinone (TGHQ), a reactive metabolite of the nephrotoxicant hydroquinone, induces the ROS-dependent activation of MAPKs, followed by histone H3 phosphorylation and oncotic cell death in renal proximal tubule epithelial cells (LLC-PK(1)). Cell death and histone H3 phosphorylation are attenuated by pharmacological inhibition of p38 MAPK or ERK1/2 pathways. Because...
متن کاملAFLUID February 47/2
Gstraunthaler, Gerhard, Thomas Holcomb, Elisabeth Feifel, Wenlin Liu, Nikolaus Spitaler, and Norman P. Curthoys. Differential expression and acid-base regulation of glutaminase mRNAs in gluconeogenic LLC-PK1FBPase1 cells. Am. J. Physiol. Renal Physiol. 278: F227– F237, 2000.—LLC-PK1-FBPase cells, which are a gluconeogenic substrain of porcine renal LLC-PK1 cells, exhibit enhanced oxidative meta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 283 4 شماره
صفحات -
تاریخ انتشار 2002